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SUMMARY

A study was made of the flutter characteristics of two delta wings
using an electric-analog computer. Comparison is made of the structural
characteristics as obtained on the analog with experimental values. Using
strip theory and the box method to represent the aerodynamics, the analog
flutter characteristics were also compared with experimental values. A
partial check of the analog procedures is furnished by a flutter analysis
on a digital computer.

INTRODUCTION

The aeroelastic performance of aircraft and missiles is a subject
of great practical importance. The response of an aircraft to turbulence,
gusts, and maneuvers, and bLhe basic stability problems of divergence and
flutter are all aspects of this general problem. Since by definition one
is concerned with interactions between the elastic properties of a struc-
ture and aerodynamic forces, it is clear that useful design computations
require a reasonably accurate knowledge of both the structure and the
aerodynamic forces. There are at present several powerful methods of
determining and representing the structural properties of typical air-
craft. However, there does not seem to be at the present time any
adequate theory for computing in a practical way the actual aerodynamic
pressures on a plan form of arbitrary shape undergoing arbitrary but
physically meaningful deformation.

It appears that a unified theory or scheme of computation which has
been verified by experimental correlation is still remote. Nevertheless
there is now sufficient experimental flutter data so that it is possible
to seek computation schemes and simplified aerodynamic-force representa-
tions which will give satisfactory correlation with experiment for certain
plan forms. Assuming that the experimental flutter data has been obtained
with reasonable accuracy, the principal additional requirement for its use




in such correlation research is that the structure of the airfoil be
defined accurately. A particularly good example of research that satis-
fies this requirement is found in some of the plan forms investigated in
reference 1. The delta wings discussed there were made of uniform thin
sheets of magnesium and therefore the structure is completely known within
the adequacy of plate theory except for the rigidity of the cantilever
restraint. This report is devoted to a structural and flutter analysis

of the delta-wing airfoils of reference 1 at supersonic speeds. In this
analysis several aerodynamic representations were used to determine which
gave better correlation with the experimental flutter data of reference 1.

This investigation was conducted at the California Institute of
Technology under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics.

SYMBOLS
A aspect ratio
ch 1ift coefficient for pitch
CL1 lift coefficient for angle of attack
CMq moment coefficient for pitch
CMOL moment coefficient for angle of attack

ety = [ e (e - 02 atoax

c local chord of wing in airstream direction
E modulus of elasticity, lb/sq in.

F aerodynamic 1lift force, 1b

f frequency, cps

81,80 structural damping of normal modes

NY = 5



v — r— 2,

Ma

Pp,P1,Pp

vertical deflection of wing, in.

deflection at station (i)
moment
Mach number
pressure coefficients defined in appendix B
pressure, 1b/sq in.

dimensionless pitching velocity, % 6

area, sq in.

wing thickness, in.

free stream air velocity
downwash, w = 8v + h

chordwise coordinate on wing

dimensionless per unit chord location of aerodynamic center

5
function representing pressure at station (j) due to wing
behind leading edge
|
|

dimensionless per unit chord location of rotation center
behind leading edge

spanwise coordinate on wing
angle of attack, radians o = 6 +

supersonic coefficient, B = Ma2 -1

ares of finite-difference cell, sq in.
chordwise length of finite-difference cell, in.
spanwise width of finite-difference cell, in.

a measure of the damping of a transient motion



0 angle of twist in airstream direction, radians
X dummy variable

v Poisson's ratio

A leading-edge sweepback angle

A cot A

o air density, 1b sec?@ in."u

o] real part of root of characteristic equation

T time, sec

(o) imaginary part of root of characteristic equation
¥ flutter parameter, ¥ = <%><9%E>

W angular frequency, w = 2nf

Subsecript:

f flutter

RESEARCH METHOD

It appears that the use of an electric-analog computer offers a
practical solution to the general aeroelastic problem. The use of analog
principles in representing structures has been discussed in detail in
references 2 through 7. These reports show that, for examples treated,
structural representation is adequate and relatively straightforward.

The representation of aerodynamic forces on the analog computer has been
treated in references 8 through 10. These show on the other hand that
serodynamic~-force representation has in the past been rather elementary
and inadequate for any but simple configurations. References 9 and 11
suggest & new approach which should be particularly satisfactory for
delta wings with supersonic leading edges. It is however necessary to
confirm the usefulness of such computation methods by a careful correla-
tion between specific computations and experimental-flight or wind-tunnel
tests.
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In the research described in this report the physical structure of
the delta wings was represented by an electrical analog for a uniform
plate as described in reference 2. This analog is a complex circuit
containing inductors, capacitors, and transformers. The adequacy of
this representation was tested by comparing the normal modes of the analog
with the known characteristics of the normal modes of the wings. The
flexural rigidity of the plate was inferred from the analog rigidity
required to give agreement in normal mode frequencies. This was later
checked by measurements of static-influence coefficients of one wing
and its analog.

Aerodynamic forces were represented in the analog by electronic
transfer admittances distributed throughout the structural analog. In
this way 1t was possible to examine the flutter characteristics for
several approximate representations of the aerodynamic forces. In all
cases the linearized aerodynamic theory for thin wings was used, and
thickness effects were omitted.

Before presenting the results of this investigation, a short descrip-
tion of the flutter phenomenon and its graphical representation is given.
Whether analysis is done by digital or analog methods, a continuous air-
foil is almost always approximated by a system with a finite number of
degrees of freedom. If the indicial 1lift-growth curves are approximated
by a finite sum of exponential functions, then the transient response of
the approximating system has a finite number of exponential time functions.
These are collectively the complementary function of differential equa-
tion theory. The exponents of these time functions are the roots of the
characteristic equation of the system, and for convenience are ordinarily
called the roots of the system. These roots are, in general, complex
numbers but because a real system is involved they must be real or nust
occur in complex conjugate pairs. The location of these roots determines
the frequency, damping, end time conctant associsted with each term in
the transient response. If the root in the upper half-plane is located
at the point p = o + i, then the damping is usually measured by the
parameter

S = __:EE___ (1)

VU2 + @2

A positive value of & corresponds to a pair of roots in the left half-
plane and an oscillatory transient term which dies out with time. The
rate of decrement is measured by the damping factor 8. A negative value
of ©® corresponds to a pair of roots in the right half-plane, and a
term in the complementary function which increases exponentially with
time. In this case the wing is said to flutter. The damping factor may
be obtained by analog or digital computational methods. It is indirectly



related to the structural parameter g wused in other types of digital
flutter computations, and usually shows similar but by no means identical
variation.

Two methods are ordinarily used to present graphically the flutter
characteristics of an airfoil. The more conventional method is a plot
of either g or & against velocity. Witk such a plot the frequency
can be indicated by inserting numerical values of frequency at discrete
points along the curve. Another method used in this report is a graph-
ical plot of the location of the transient roots in the complex plane.
Since roots appear as conjugate pairs, only the upper half of the plane
is shown. These roots are continuous functions of system parameters,
and if, for example, the velocity is varied, the roots trace out a
continuous curve in the complex plane. When a root crosses the imag-
inary axis into the right half-plane, flutter occurs. In this study,

2 .

the flutter parameter ¥ = <%><%§—> is the variable used. Values of ¥ W

1

are therefore indicated by numbers placed at discrete points along the 1

locus of a root. N2
PROPERTIES OF THE DELTA-WING WIND-TUNNEL MODELS -

Physical Characteristics

Two delta wings were used in the experimental flutter research
described in reference 1, one with leading-edge sweepback angle of 450
and the other with leading-edge sweepback angle of 60°. These will be
referred to as the 45° and 60° wings for brevity. Both are cantilever
semispan models made of thin magnesium sheet with leading and trailing
edges beveled at an angle of 30°. Thickness ratio for the models based
on mean aerodynamic chord is sbout .0l for both wings. Pertinent phys-
ical characteristics from reference 1 are listed in table I. The modulus
of elasticity for the wing was not reported in reference 1, so a value

of E =6.0(10)® 10 in.™2 was chosen as an initial estimate.

Normal Modes of Vibration

The frequencies of the first three normal modes of vibration of each
delta wing were measured in the course of the research work described in
reference 1. At the same time approximate node lines were obtained for
the second and third modes. Between flutter tests at different Mach
numbers, the frequencies were remeasured, so that four determinations N
are available for each frequency. These data from reference 1, the




average values, and data from reference 12 are listed in table II(a).
The node lines shown in reference 1 are reproduced in figure 1.

At a later time, the mode shapes for both wings were measured at
the Langley Laboratory using a sand pattern technique. The mode shapes
and frequencies for the 60° wing were provided in a private communication
from the NACA flutter group at the Langley Laboratory. The mode shapes
were given in the form of contour lines of constant displacement. How-
ever the results could not be compared readily with the analog-computer
.results, since the successive contour lines did not represent equal
increments of displacement. These data were replotted in such a way *
that interpolation could be used to obtain comparative data. The details
of this reduction are not included in this report, but the final results
are shown in figure 2. Since the original data show certain inconsistencies,
the mode shapes should not be assumed to be of very high accuracy.

Additional normal mode data were published in reference 12 after the
flutter research described in this report had been completed. Although
these data could not be used to aid in the original structural synthesis,
they have since been used to confirm the accuracy of the structural repre-
sentation. The data of reference 12 are again not in a form which can
be directly compared with the analog results. However by cross plotting
the data it is possible to construct contour lines of equal displacemecnt
as discussed asbove. The results of this work are also shown in figure 2.
Figure 2, therefore, contains two sets of mode shapes obtained by inter-
polation from two different sets of data. Since the two sets of data
are presumed to be the results of one physical experiment, the two sets
of curves of figure 2 should be identical. The degree of correspondence
observed gives a rough idea of the errors ilnvolved in the original mcde
shapes and in the graphical interpolation procedure used in preparation
of figure 2.

Similar data for the 450 wing are shown in figure 3. In this case,
the data shown became available only after the analog flutter research
had been completed.

Influence Coefficients

As a result of the analog normal mode tests to be described below,
it was concluded that either the mass of the wings or the assumed modulus
of elasticity was in error. At the time it was assumed that the latter
was in error. This was later confirmed by a measurement of influence
coefficients for the 45° wing by the NACA flutter group. The influence
coefficients obtained are given in figure 4. It will be noted that the
matrix of coefficients shows a reasonable degree of symmetry.




Flutter Characteristics

Flutter characteristics reported in reference 1 were determined in
the Langley 9- by 18-inch supersonic flutter tunnel. Tests were made at
fixed Mach numbers and velocities, with air density varied to find a
condition of marginal stability (incipient flutter). Both wings were
tested in this way for Mach numbers equal to 1.3, 2.0, and 3.0. In addi-
tion a subsonic flutter condition was obtained in which a fixed air
density was chosen, and velocity varied until flutter occurred. The
experimental results presented in reference 1 are reproduced in table II(b).

STRUCTURAL PROPERTIES OF ANALOGS

Normal Modes

The methods used to represent the system by an electrical analog
require replacement of the partial differential equations of a plate by
finite-difference equations. The accuracy of the analog representation
depends primarily upon five factors, three of which involve the actual
wing, and two involve the finite-difference representation:

(a) Linearity and knowledge of the elastic properties of the
cantilever-wing models

(b) Effectiveness of the cantilever-root restraint

(c) Adequacy of thin plate theory to describe the flexural properties
of the cantilever-wing models

(d) Proper representation of boundary conditions at free edges,
particularly along the slant leading edge

(e) The total number of finite-difference cells

With a given specific analog it is difficult, if not impossible, to
separate these effects. However since inaccuracies due to items (d)
and (e) should decrease as the number of cells is increased, it is
possible to obtain a partial separation of items (a) through (c) from
items (d) and (e) by testing analog structures with different numbers of
cells. The analog computer at the California Institute of Technology
can be used to represent a delta-wing cantilever plate with 21 cells.
Consequently tests were made with three analogs containing 10, 15, and
21 cells as shown in figure 5. Preliminary measurements of normal mode
frequencies showed that all frequencies for both 45° and 60° wings were
higher than the model values by a factor of about 1.11. The specific
values of this factor are given as follows:

NY b b s
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Ratio of analog to model frequency
450 wing 60° wing
Cells
Mode 1 Mode 2 Mode 3% Mode 1 Mode 2 Mode 3
21 1.098 1.115 1.121 1.096 1.088 1.101L
15 1.11k 1.119 1.134 1.106 1.098 1.104
10 1.133 1.152 1.157 1.12k4 1.122 1.12k4

It will be noted that the factor relating computer frequency to
measured model frequency is remarksbly uniform for all modes. In view
of the additional close agreement between the 21~ and 15-cell cases and
between the 45° and 60° wing, it was believed that the major source of
discrepancy lay in inadequate data regarding properties of the model.

An attempt to ascribe the discrepancy to nonrigid root restraint
led to corrections which varied considerebly for different modes. A
root flexibility was added which was equivalent to the bending flexibility
of a strip with a width 5 percent of the trailing-edge span. This was
approximately eight times the wing thickness. Frequencies of the first
three modes were changed by the following amounts:

Effect of root flexibility on normal modes, 15-cell case

Change in frequency, percent

Mode 1 Mode 2 Mode 3
60° wing -6.2 -%.9 -2.7
450 vwing -6.2 -3.8 -2.2

Comparison of these numbers with the observed discrepancies shows that
allowance for root flexibility will give rise to poorer consistency
between analog and model results for either wing, since the first-mode
frequency will be lowered more than the others. It is therefore con-
cluded that there is no evidence for root flexibility in an amount that
would significantly affect the frequencies of the normal modes.

Another factor entering into the equation of bending of a plate is
Poisson's ratio v. TFor a thin plate it is unlikely that reasonable
variation of this ratio will affect either the mode shapes or frequencies
by a significant amount. This was confirmed for the 450 wing by the use
of two analog structures with v equal to 0.25 and 0.30. Measurement
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of the first four normal modes showed no significant difference in fre-
quency and no differences in deflection that were greater than normal
probable error in computer measurements. Evidently the choice of v 1is
unimportant for a delta wing of this thickness ratio. All subsequent
work was done using the value 0.25.

Since the mass of the model is well defined and was measured, it
is unlikely that there is any error in this value. The remaining specific
source of errcr in structural properties is the estimated value of plate
rigidity which depends linearly on the modulus of elasticity E and on
the third power of the effective thickness t. An error of 0.0022 inch
in thickness or an error of 21 percent in the estimated value of E
would account for the discrepancy.

The final analog structure was obtained by decreasing the bending
rigidity throughout the plate by a constant factor The values chosen
were 0.808 for the 45° wing and 0.815 for the 60° wing. These values
were chosen on the basis of the 15-cell results and were made different
through oversight, but since the effect of this difference on mode fre-
quency is only O. i percent, the difference may safely be ignored. This
change in bendlng rigidity corresponds to a modulus of elasticity of
about 4.87(10)6 pound per square inch if the plate thickness is assumed
to be correct. The values of model and modified analog frequencies are
given in table III. Considering the scatter and evident probable error
in the model data of table II, the results are in remarkable agreement.

Analog mode shapes are given in table IV for both wings represented
by 10, 15, and 21 cells. In the analog structure, the displacement (but
not the slope) is constrained to be zero at the inner row of cell centers.
For this reason the deflections at these stations are not recorded in
table IV. The stations indicated in the various cases are located at
different points on the wing as shown in figure 5. For this reason it
is difficult to compare mode shapes directly. However by interpolation,
it is possible to represent the mode shapes by contour lines of constant
deflection. This has been done for both wings, for the 15- and 2l-cell
cases. Results for the 60° model are shown in figure 6 and for the 450
medel in figure 7. The amplitude has been adjusted so that the mode
shapes for 15 cells and 21 cells correspond roughly to the same energy
of excitation. In this way it is possible to see by inspection the
variation in mode shape with number of cells. Even for the fourth mode
the agreement is surprisingly good.

To compare these mode shapes with the three experimental modes for
each model, the corresponding data for model and 2]1-cell analog have been
plotted together in figures 8 and 9. Figure 8 contains data for the 60°
wing taken from figures 2 and 6; figure 9 contains data for the 450 wing
taken from figures 3 and 7. In the first mode for both wings, the con-
tours for the analog show less curvature than the model. From an intuitive

N
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standpoint the analog modes seem more reasonable. In the second mode
the node lines are in good agreement, but with moderate discrepancies
aft of the node line for the 45° wing and forward of the node line for
the 60° wing. The third modes are in good agreement except near the
leading edge from midspan to root. Considering the approximate nature
of the experimental model modes, it is believed that the correspondence
between model and analog modes is excellent and that the structure is
satisfactorily represented by either the 15-cell or 2l-cell analog.

Influence Coefficients

After completion of the analog flutter research described in this
report, the experimental influence coefficients of figure 4 became
available. Since this gave an opportunity to check the value of plate
rigidity, the analog circuit for the 45° wing was set up a second time
and static-influence coefficients were measured. From the measured
electrical influence coefficient it is possible to infer a value for the
modulus of elasticity in order to obtain a coefficient equal to the
experimental value. These results are given in table V. For the 2l-cell
case where all four coefficients were measured and where greatest accuracy
is expected, the average value for the modulus of elasticity is

E = 4.91 x 10® 1b in.72 (static-influence coefficient)

This is very close to the value

E = 4.87 x 100 1b in.™@

inferred from the normal-mode measurements.

The above result does not imply that the modulus of elasticity of
the magnesium alloy is necessarily the value given above. Remeasurement
of the 450 model thickness gave a value of 0.033 inch instead of the
value of 0.034 inch reported in reference 1. If this value were used,
then the value of E Dbased on static-influence coefficients would be
5.37(10)6 and based on normal modes, 5.33(10)6 1b in.-2. Clearly the
result of tests on the analog structure can only give an inferred value

of the product E(t)?. The significance of the above test is that the
influence coefficient measurement confirmed the value of plate rigidity
required to duplicate the normal-mode frequencies with discrepancy less
than 1 percent.
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REPRESENTATION OF AERODYNAMIC FORCES

Aerodynamic forces on a delta wing can be approximated in many dif-
ferent ways. In this section consideration will be given to some of the
methods suitable for supersonic speeds when the leading edge is supersonic.
It is well known that the two-dimensional steady-state lift coefficient
for a thin airfoil with rigid chord is 4/B and that the pressure over
the airfoil is constant from leading edge to trailing edge. TFor a rigid
unswept finite wing with constant chord the same result holds except near
the tip where for a spanwise distance of c/B a portion of the flow is
mixed subsonic-supersonic. On a rigid delta wing the pressure distribu-
tion is somewhat different. For the case of a supersonic leading edge
the wing can be divided into two regions by the Mach cone sweeping aft
from the apex of the wing. Outside the cone the pressure is constant
and is larger than the value based on the two-dimensional 1ift coeffi-
cient, U4/B. Inside the Mach cone the pressure varies in the manner shown
in figure 10. However the overall or average 1ift coefficient for the
wing has a theoretical value precisely equal to M/B, no matter what the
speed or Mach number. Inspection of figure 10 shows that as the Mach
number increases the steady-state pressure distribution on a rigid delta
wing is more nearly constant and the "local" 1ift coefficient more nearly
approaches the constant value M/B. Needless to say, the pressure dis-
tribution is modified for motion which differs from that of a rigid wing.

The above considerations suggest that a relatively crude approxima-
tion to the aerodynamic forces is the simple assumption that the pressure
everywhere depends upon the local downwash or angle of attack and that
there is no lag in the development of this pressure:

>+ ()
a=@+g

However, it is clear that at low Mach numbers and for other than rigid
wing mode shapes this assumption may lead to large errors.

where

Another representation which is well adapted to the methods of
conventional flutter analysis is a simple strip theory. For such an
approximation, the delta wing is divided into strips parallel to the
airstream and lumped aerodynamic forces are applied to these strips.

In its simplest form, camber is neglected and the aerodynamic force and

N
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moment are assumed to depend only upon the motion (angle of attack and
pitch) of the section for which the force is to be computed. This method
may be extended in complexity by the following additional features:

(a) The forces on a specified strip may be given a dependence upon
the motion of adjacent strips.

(b) Lift and moment forces due to camber may be included. The
simplest assumption is that of constant curvature or "parabolic camber.”
A more complex representation is required if cubic or "S" shaped camber
is significant.

(c) Camber forces or chordwise bending moments may be represented.

The degree of complexity which is justifiable in an engineering sense is
greatly limited by the fact that the details of representations (a), (b),
and (c) above have only been partially worked out in a form suitable for
computation. Omitting these features the aerodynamic forces on the ith
strip can be spproximated by the equations:

Fy = (‘:’_‘2{2->(Si) {CL(L(T)*GX]-(T)} (3)

=
I

;= <p—22—>(sic> {CMq('r)*q('r)} (W)

The approximations involved in these equatlons are discussed in

appendix A.

Another possibly more accurate representation is obtained through
use of equation (15a) of reference 13. The linearity of this equation
shows that the pressure at any point can be obtained by an integration
of the downwash or angle of attack over the surface of the wing.

D = <%E>j]; k{(Xj - xi),(yj - h)ﬁ}*@i(ﬂ S (5)

This in turn implies that the pressure may be approximated to any required
degree of accuracy by a summation, the elements of which are obtained by
dividing the wing into small areas and multiplying each area by the con-
volution of an influence coefficient and an average local angle of attack.
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Fj = Pj ASj = G%;?:%::{%ij(T)*ai(T)} 455 (6)

Omitting the time dependence of kij: or in other words assuming

the indicial response is a step function, equation (6) takes on the
simple form

n e =

2
Fy = %—Z ki joy Sy (7)
1

where k is a coefficient which depends only on geometry and Mach

1J
number. This equation is valid for steady-state motion and for slowly
varying time-dependent motion. When time dependence is important, evalua-

tion of kij(T) is difficult. For flutter computations, interest is

primarily centered on the case of incipient flutter in which case steady-
state sinusoidal motion prevails. If such oscillatory motion is assumed,
it 1s possible to calculate the steady-state pressure (magnitude and
phase angle) as a power series in frequency. This power series can be
used to synthesize electrical circuits which will give good accuracy for
low~frequency sinusoidal motion, and a reasonable approximation to the
force for arbitrary motion. Methods of dividing the wing into cells and
evaluating the ccefficients kij are discussed in appendix B.

Equations (6) and (7) show that the actual velocity enters into
flutter computations at two points, first in the determination of the

2
dynamic pressure E%— and second in determination of the downwash

¥=q=6+%— (8)

In the results which follow it will be found that in the second instance
the effect is of second order, so that the experimental value of velocity
may be used in the computation of o with negligible error. On the
other hand, if the pressure distribution is determined by Mach number

and mode shape, then the result of a flutter computation is not flutter

2

velocity but a value of p; s the dynamic pressure, at which marginal

stability results.
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Another important parameter is the dynamic pressure multiplied by
the two-dimensional 1ift coefficient. This is defined in this report as
the flutter parameter and indicated by the symbol V.

v- (%)(9‘;3) (9)

2
In reporting results of flutter computations, values of E%— and ¥

will be given rather than a density based on the experimental value of v
or a velocity based on the experimental value of p.

ANAIOG COMPUTER FLUTTER COMPUTATIONS

Strip Theory

For wing motion in which there is little wing camber and at high
Mach nurbers, strip theory can be applied. For Mach numbers high enough,
there is negligible lag in the growth of aerodynamic 1ift due to angle
of attack, and for properly chosen reference axes the only importan
aerodynamic terms are CLa and CMq, the other terms CLq and CMQ

being effectively zero. As stated in appendix A, the choice of midchord
for reference axis is probably most suitable for a delta wing at high
Mach numbers, although near the root the center of pressure X, moves
slightly forward. Aerodynamic forces ac described by equations (3)

and (4) can be very readily represented on the analog computer, affording

an casy means of comparing strip theory computations with box theory for
delta wings.

Using the aerodynamic coefficients

Crg = L/
Cry = O
Cy, = O
Cyq = 1/38
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flutter analysis was carried out for the 45° wing and the 60° wing at Mach
numbers of 2.0 and 3.0. The 15-cell structure was used, with one aero- N
dynamic "cell" or strip associated with each chordwise row of structural

cells. There were therefore 15-structural cells and 5 aerodynamic strips
although the root strip, having negligible motion and being nearegt the
cantilever restraint, was omitted. The outer four strips were represented
aerodynamically, with 1ift force applied at the apprcpriate point xgc

behind the leading edge, where c¢ 1is the local chord. This force was

calculated using the downwash at a point a distance xjc¢ behind the

leading edge

=e+h% (lO)

nHH=

e
i}
<=

For convenience, the angle 6 was measured at the midchord since 6
does not vary greatly with chordwise position and since x; does not

vary greatly from the value 0.50.

The results given in table VI are significantly different from the
wind-tunnel data and the results for box theory. In the first place,

5 .
the values of E%— are considerably lower than experimental values,

although as might be expected the agreement is better at high Mach num-
bers and for the 45° wing. In the second place, the computed flutter
frequency is considerably below the experimental value, 20 percent for

the 45° wing and over 30 percent for the 60° wing. It is also of interest
to note that the analog results show no trend of the flutter parameter ﬂ
with Mach number although the experimental data does.

As part of the investigation of strip theory, an effort was made to
obtain better agreement through variation of the important aerodynamic
parameters. The principal variations to be considered are in the steady-
state values of the coefficients CL and CMq, the locations of the

04

reference axes X, and Xj, and the time variation of the indicial 1lift
coefficient CLQ(T). As long as the parameter Cla is maintained constant

across the span, variation in the steady-state value of €y ~ results only
o

2
in a change in the parameter E%— without any change in the flutter

frequency. The change in CLq required to reach agreement with experi-
ment is listed as follows:
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450 wing 60° wing
Mach number 2.0 3.0 2.0 3.0
Increase in CIq/ percent 19 10 64 31

There does not seem to be a simple Jjustification for these changes and
since flutter frequency is not affected, the discrepancy in frequency
remains large.

The next factor varied was the parameter CMq’ To demonstrate its

small effect, this term was set equal to zero with results shown in

2
table VI. The percentage change in E%— was remarkably small considering

the fact that the term was not reduced by a small factor but removed
entirely. Evidently this coefficient cannot be modified to give agree-
ment with experiment.

A third important aeroelastic parameter is the center of pressure
Xn. For constant angle of attack the value of xg 1is 0.50 referred to
the local chord in the outer regions of the wing. Near the root the
center of pressure is theoretically forward of the midchord except at
the root where the center of pressure is again at the midchord. At
high Mach numbers BA >> 1 this effect is quite small with center of
pressure near the midchord at all span positions. On the other hand,
for a linear or parabolic bending mode shape the value of x, 1is more
likely to be about 0.70 near the root and perhaps 0.40 near the tip,
the actual value depending somewhat, but not critically, on the actual
mode shape and the effective aspect ratio A' = AB. The importance of
this term was investigated by varying xo separately at each strip
with results shown in table VII(a). It can be seen that moving the
center of pressure forward at the tip increased the discrepancy both

2

in E%— and fy. Near the root moving the center of pressure aft gives
better agreement but the overall effect is small. If, for example, one
chooses the values

0

L
(root) L 2 3

(tip)

Xo 0.70 0.60 0.55 0.50 0.45

Strip




18

2
then the overall change in 9%— for the 60° wing is about 2 percent and -
the net change in flutter frequency is 2 cps. Evidently a reasonable

variation in x, will not provide agreement with experimental results.

The two remaining aerodynamic parametefs of importance are the time
CIQ T)

CIQ(W)

location xq. The first of these was observed to have such small effect

variation of indicial 1lift coefficient and the rotation center

that the data were not included in this report. The second was also
found to be relatively unimportant. The results shown in table VII(Db)
indicate the location of rotation center x; to be less important than

the location of moment center x, by a factor greater than 10.

NHE =

The final conclusion is that simple strip theory cannot be used or
even modified to give good agreement with experimental data. It appears
that "camber'" or "flap" forces and interactions between adjacent strips
rust be represented if this approach is to be used. On the other hand,
the introduction of leading- and trailing-edge flaps effectively triples
the nuriber of aerodynamic interactions which makes it comparable in com-
plexity to the box method which is somewhat easier to use. No computa-
tions of this type were attempted.

Box Method

Flutter computations using the box method were made with several
simplifying assumptions regarding the nature of the aerodynamic forces.
These are described in appendix B.

Case A.- In case A it is assumed that the pressure at a point depends
only upon the local motion with 1ift coefficient equal to the two-
dimensional value. Aerodynamic forces of this nature would give a
flutter frequency and flutter mode shape independent of Mach number,
and a constant value for the flutter parameter &. It is possible to
examine the data of reference 1 for consistency with this assumption.
Table VIII lists the computed value of flutter frequency, dynamic pres-
sure 9%3, and the aerodynamic parameter ﬁ. To facilitate comparison
the ratio of computed and experimental values of ¥§ are also tabulated.
Data for the 45° wing show reasonable constancy, with variation in ¥
of about 14 percent between lMach numbers of 1.5 and 3.0. However the
60° wing shows a 22-percent variation between Mach numbers 2.0 and 3.0. -
At best this aercdynamic assumption would be expected to predict flutter
conditions with accuracy in the parameter § of perhaps 20 or 30 percent.
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There are three outstanding features to be noted in case A of
table VIII. PFirst, the agreement between observed and ccmputed values
is surprisingly good for such a simple representation of aerodynamic
forces. Second, the lack of agreement, though not large, shows a sig-
nificant and regular trend. Although the experimental values of ¥ vary
with Mach number, the computed values are essentially constant. This
result is the justification for the remark made earlier that the velocity
term in the downwash equation has only a second-order effect on the flutter
condition. It will also be noted that the agreement with experiment is
best at low Mach numbers. This result is contrary to expectation since
the aerodynamic-force representation should deteriorate at low Mach num-
bers. It is probable that there are other compensating sources of error,
such as oversimplification of pressure distribution. The third feature
to be noted is that there is very little difference between the 10-, 15-,
and 2l-cell representations. This is quite surprising since the 10-cell
case has aerodynamic forces represented at only six stations on the wing
(cells 1 to 6 in fig. 5), as compared with fifteen stations for the
21-cell case.

Case B.- A more accurate approach is one which correctly ascribes
the force at a station to the motion of that portion of the wing located
within the forward sweeping Mach cone. This can be done approximately
by the methods discussed in references 9 and 13. This approach does not
require any prior knowledge of the flutter mode shape, but is necessarily
more complicated than case A because of the aerodynamic interactions
allowed between various parts of the wing surface. TFor this investiga-
tion it was first assumed that the transit time of all interaction effects
was small. Aerodynamic forces were therefore approximated using equa-
tion (7). The values of kij were calculated using equations in

appendix B and are listed in table IX.

The results are presented in case B of table VITII. Compericon with
case A shows that this assumption results in much better agreement with
the experimental data. There is however still a moderate discrepancy

at the highest Mach number for both wings.

Case C.- As described earlier, each aerodynamic influence coeffi-
cient can be described by a power serles expansion in frequency. Equa-
tions for the first three terms are given in appendix B and numerical
values are listed in table IX. For the frequencies encountered in this
problem only two or three terms are required to insure errors far less
than 1 percent. In fact, inspection of the coefficients would lead one
to expect very little difference between use of the complete power series
and use of only the constant (zero frequency) term, case B.

Results for a representation accurate to the first power in fre-
quency are given in case C of table VIII. As expected the difference
between this case and case B is slight. The effect 1s greatest with the
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<
45° wing at Mach number 1.5 where the computed parameter 2%— changes by -

about 2.5 percent. At Mach number 2.0 the effect is only 1 percent,
indicating similar computations at Mach number 5.0 unnecessary. Simi-
larly with the 60° wing the effect is greatest at the lower Mach num-
bers. However, even at the lowest value, Mach 2.0, the effect was a
2

reduction of only 3% percent in the parameter Q%—. At Mach 3.0 the
reduction was about 1 percent. It appears that any further refinement
to bring about better agreement between computation and wind-tunnel

results must involve a refinement of the static- (zero frequency) pres-
sure coefficients for an arbitrarily deformed wing.

SRl el

Effect of Individual Pressure Interactions

Aerodynamic pressures at various points on the wing undoubtedly
have varying effect in producing flutter. To determine the location of
the more critical areas on the wing, all pressure interactions were varied
one at a time for the case of 45° wing, 15-cell structure, Mach 2.0. An
individual pressure interaction on the Jjth cell was denoted by

/

2\,
- (Y . ASs
Py = <2>kkij\,al £s (11)
pve
The effect of a change in pij can be expressed as a change in —— for

flutter per unit change in the coefficient ky Expressed this way the

,j.
effect can be described numerically by the parameter
A pf ozg}
k) = (12)

[:A kij/kij:l
Table X lists the values of k; for all interacting cells for the 450
wing, llach 2.0, 15-cell case.

These results are significant but a little difficult to interpret
because the effect of a given interaction depends upon three factors:

(a) Angle of attack at the ith cell
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(b) Magnitude of the interaction coefficient Ky

(c) Effectiveness of a force on the jth cell in inducing flutter

It is the third of these factors that is desired here. This information
can be obtained from another coefficient ko defined below.

_ Bk

ko
('Lik

(13)

iJ

If the wing is moving so that all of the «; are in phase, then all
values kp for a given J should be equal and the values of ko for

different j provide a relative measure of the desired factor. For
computing kp, values of a; were measured at flutter. It was noted

that the various values were not exactly in phase particularly near the
root and forward on the wing, so that close agreement in the values of ko
for a given value of j 1is not to be expected. Values of this factor are
alsoc given in table X and do show the anticipated results. A negative

2
value of ko implies that 9%— is smaller if kjj 1is increased, that

2
is, flutter occurs at a lower value of B%—. It can be seen that forces

along the leading edge are the ones that contribute to the onset of
flutter, whereas forces along the trailing edge have a stabilizing effect.

This would seem to be equivalent to a statement that moving the
center of pressure forward at any station should have a destabilizing
effect. The possible equivalence of these statements will be discussed
in the next section.

Location of Center of Pressure

Shifting the center of pressure of various cells was investigated
for several configurations including all three Mach numbers, case A and
case B. Results were remarkably uniform so the data for only case A at

2
Mach 3.0 will be presented. Table XI lists the per unit change in 9%—
per unit shift of center of pressure for each cell. For example, if the
center of pressure of cell 3 is shifted forward 1 percent of the cell
length (a distance equal to 0.5 percent of the local chord), the computed
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value of E%— is decreased approximately 1.8 percent. This result is
consistent with the results of the preceding section. It can be seen

from table XI that the effect is greatest for the outer parts of the
wing, but the effect is still significant at the LO-percent span position.

The results of the last two sections suggest that simple variation
in the magnitude-of-pressure interactions or the centers of pressure can
be used to explain the discrepancies observed for the cases B and C. As
yet no logical procedure has been found for achieving this result. For
example, it seems plausible that the pressure interactions and centers
of pressure should be least accurate at low Mach numbers, yet for these
cases the basic results are the most accurate.

Flutter Mode Shape

Some insight into the flutter problem is afforded by consideration
of the flutter mode shape. Experimentally it is found that the calculated
flutter mode shape does not depend significantly upon the various assump-
tions considered for aerodynamic representation. Approximate mode shapes
were measured with the analog computer for the 15-cell representation of
both wings at Mach number of 3.0. These mode shapes are given in table XIT.
It can be seen that the mode shape is similar to the first vibration mode
of the wing, although the frequency is about three times as great.

DIGITAL CHECKS

Analog computation, as all computation, requires a careful checking
procedure to insure accuracy of the results. A part of the established
procedure involves digital checks on various simplifications of the system.
For example, the simplest representation of aerodynamic forces, case A,
can be used with two or three of the normal modes to obtain an approximate
behavior of the system. To pass from this aerodynamic representation to
any of the more elsborate ones may involve great complication of the
digital procedure, but it requires a negligible extension of analog pro-
cedure. Thus a digital check of the simpler system can be used to assure
that the analog circuit is set up properly not only for the simple system
but for the more complex aerodynamic representation as well. In addition,
a digital check of this type gives additional information regarding the
normal modes primarily involved in flutter and gives a flutter mode shape
as a linear combination of the normal modes. The analog computer gives
the flutter mode shape directly, but it does not relate it to the normal
rodes. TFor these reasons, a series of digital checks have been made.

In all cases the normal modes of the 15-cell structure were used, and

=
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the aerodynamic force at each cell was made proportional to the local

downwash:
Fy = <E%€><%>@Bi)(ai) (14)

Except where otherwise noted the quantity o was calculated from the
relation

v

o = <e + i> (15)

As mentioned earlier the term ﬁ/V' in equation (15) is of secondary
importance, with flutter characteristics dependent almost entirely on

the value and possible spanwise and chordwise variation in 1ift coefficient.

Flutter Analysis Using Two Modes

Inspection of normal-mode shapes in figures 2 and 3 shows that the
first mode is predominantly a bending mode, the second mode predominantly
torsion, while the third mode shows characteristics of a second bending
mode with some torsion. In view of the observed value of flutter fre-
quency, it is to be expected that flutter will primarily involve the two
lowest modes.

A computation was made using these modes tor both 45° and 60° wings
at Mach numbers equal to 2.0 and 3.0. The computed values of ¥ and
flutter frequency fy are given in table XIII. Alsc included are wind-
tunnel and analog-computer values. Comparison of the data leads to the
following conclusions.

(a) The first two normal modes play a dominant role in producing
flutter of these wings.

(b) The essentially constant value of § does not agree with the
experimental trend where V¥ decreases as Mach number increases, partic-
ularly for the 60° wing.

(c¢) The difference between computations at two Mach numbers lies
only in the value of v 1in equation (15). Between Mach 2.0 and Mach 3.0,
this value changes 20 percent. Since this changes the value of ¥§ only
1 or 2 percent, it is clear that the precise value of v used in equa-
tion (15) does not significantly affect the flutter condition even though
it is the major source of aerodynamic damping in the system.
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(d) It seems reasonable that the simplified aerodynamics would give
the most accurate agreement with experimental results at high Mach num-
bers. This expectation is contrary to the results for the 60° wing. At
Mach number of 2.0 for the 60° wing, and for both Mach numbers for the
450 wing, the calculated values of ¥ are very close to the experimental
values.

(e) Calculated flutter frequencies are lower than the experimental
values.

Three and Four Mode Flutter Analysis

In order to investigate the discrepancies in items (d) and (e) of
the preceding section, similar computations were made using the first
three modes for both the 45° and 60° wing, and using four modes for the
459 wing. These results, also included in table XIII, confirm the first
two conclusions above and modify the last two as follows:

(d) The close agreement in the parameter § for certain cases was
fortuitous and not significant for the two mode case. The values obtained
using more modes are definitely higher, and in good agreement with the
analog computer which utilizes, or more correctly represents, even more
of the modes.

(e) The calculated flutter frequency shows better agreement with
experiment when more modes are used.

In addition, the following data can pe obtained regarding the flutter
node shape. Using the lowest two modes as given for the 15-cell struc-
ture in table IV, the flutter mode shape consists of 86 percent first
mode and 14 percent second mode. Using the lowest three modes the per-
centages are 84 percent first mode, 14 percent second mode and 2 per-
cent third mode. It is clear that flutter involves primarily the lowest
two modes.

Two Mode Analysis With Structural Damping

As a result of some paradoxical analog results, four complete digital
checks were made using two modes. These checks included computation of
the location of the four roots of the system for values of ¥ ranging
frorm zero (no aerodynamic forces) to a value well above flutter. Two of
the cases do not show a well defined flutter, so that it is more informa-
tive to plot the actual system-root locations as functions of § rather
than to merely list the flutter condition for each case. The four cases
considered here are the flutter computations for the MSO wing using two
riodes and various assumptions regarding aerodynamic forces and structural

N - =
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damping of the two modes, g and €. The modes used in these computa-
tions are the first two normal modes of the 15-cell analog.

Case Aerodynamic force g1 8o
1 Pj =»yAsJ-(ej) 0 0
) Pj =y Asj(ej) 0.05 0.03
3 P: =¥ AS.[le + é 0 0

J J v/,
J
_ ﬁ)
L Pj =¥ Asj(e + ;/j 0.05 0.03

In case 1 there is no source of damping in either the structure or
the aerodynamic forces. As a result, for § increasing from zero, the
roots are constrained to move along the imaginary axis starting at points
in the complex plane corresponding to the two-structural normal modes.
Since the roots move in opposite directions from the starting points,
they must meet at some particular value of ¥ and then split, one moving
into the left half-plane, the other into the right half-plane. Inspec-
tion of the equations of the system shows that the characteristic equa-
tion contains only even powers in the varisble which determines root
location. Consequently the plot of the roots must show complete quad-
rantal symmetry as shown in figure 11(a). Below ¥ = 14.6 the damping
associated with all roots is zero, but one cannot properly say that a
flutter condition exists. However, for larger values a definite flutter
occurs. In comparing with the other cases it seems consistent to say
that f%utter occurs at a frequency of 150 cps (w = 940) when ¥ 1is equal
to 14.6.

It is to be expected that structural damping will move the roots
over into the left half-plane, at least for small values of ¥{. 1In
case 2, the values chosen for structural damping are the inherent damping
measured in the analog circuit, and are perhaps slightly larger than the
values for the model. The results shown in figure 11(b) are only slightly
different from the results for case 1. This was one of the cases regarded
as paradoxical when first studied with the analog computer. The results
obtained with the analog computer are compared with the digital results
in figure 12. On the basis of data given earlier, it is expected that
the analog system will show a root bending into the right half-plane at
a higher frequency than the two mode system and at a higher value of ¥.
Figure 12 shows that this is indeed the case. The correspondence between
the two systems is considered satisfactory.
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In case 3 with the downwash properly represented, the roots move
more definitely into the left half-plane, and show a more definite
flutter at a frequency of 150.5 cps and a ¢ value of 14.9. These
values are listed in table XIII and were referred to earlier. The entire
locus of roots is shown in figure 11(c).

Case 3 represents the basic check case except that the analog com-
puter has the small amount of inherent structural damping used in case 2.
A digital solution (fig. 11(d)) including structural damping is provided
by case 4. Evidently, the flutter condition is not significantly changed,
with fp = 149 cps and ¥ = 15.0. Since structural damping has a neg-

ligible effect on this system, it is expected that it would have a cor-
responding small effect on flutter condition for the actual wing.

CONCLUSIONS

At supersonic speeds the flutter of simple delta wings of the type
exanined is a phenomenon involving primarily the two lowest normal mecdes
of the wing. Use of more than the three or four lowest modes in flutter
analysis does not give a significant improvement in accuracy. Greatest
accuracy in supersonic flutter computations was obtained using the box
method, with the pressure at a given point dependent upcn the motion of
that point and all other points within the forward sweeping Mach cone.
Flutter for both 45° and 60° wings was predicted with good accuracy at
low Mach nurbers but at the highest Mach number (Mach 3.0) there was a
significant discrepancy in the experimental and computed values of dynamic

pressure E%— at flutter. This discrepancy was equivalent to a 20-percent

error in density for the 45° wing and a 35-percent error for the 60° wing,
or alternatively was equivalent to a 10-percent error in velocity for the
450 wing and a l6-percent error for the 60° wing. Judging from the trends
of ¥ with number of cells, this would be somewhat improved by using a
larger nurber of cells. However it does not appear that the large dis-
crepancy at Mach 3.0 would be eliminated by use of any number of cells.

For the wings considered, any lag in the development of aerodynamic

1lift was completely negligible from the standpoint of influence con flutter.

It is also to be noted that the computed flutter conditions are in general

2
unconservative, indicating a value of 9%— greater than the experimental

value. However the degree of unconservativeness is not significant except
at the highest Mach numbers.

OSSN 3
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A possible explanation of the discrepancy lies in the effect of
wing thickness which should become larger at the higher Mach numbers.
A preliminary estimate indicates that over the beveled leading edge,

the local lift coefficient is increased by a factor of 4 or 5
while at the trailing edge it may be increased by a factor of
the area involved is small, it is to be noted in tables X and
increased lift ccoefficient at the leading edge would have the
effect on the flutter condition. Using the numbers above and

of k3 from table IX it can be shown that the computed value

would be reduced by about 20 percent for the 45° wing at Mach
of lack of data, similar estimates cannot be made for the 60°
presumably the effect would be similar.

California Institute of Technology,
Pasadena, Calif., March 1k, 1958.

at Mach 3.0,
2. Although
XI that an
greatest
values
ofﬂf

2
3.0. Because
wing but
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APPENDIX A

STRIP THEORY APPRCXIMATION TO AERODYNAMIC FORCES

When camber is negligible, two-dimensional aerodynamic forces can
be completely specified by four coefficients

(%)(S) 3@@(7)*@(7)} + {ch(-r)*q(T} (16)

M = (%)(cs) @(ﬂ*a«r} ; {chm*q(T} (17)

When moment reference axis x, and rotation center X] are properly
chosen, the steady-state values of CLq and CMCL are zero and the over-

all contributions of these terms are small for conventional flutter
involving simple bending and torsion with bending frequency well below
torsion frequency. Omitting these terms, the equations above reduce to
equations (3) and (4). A method frequently used for flutter analysis of
finite wings is to represent the local forces by these equations but in
which the brackets are taken to be matrices, thus allowing aercdynamic
interactions between strips on the wing. This method should give satis-
factory results whenever forces due to camber are negligible. For high
supersonic speeds the matrices are largely diagonal and the time varia-
tion of the coefficients is small. In this case equations (3) and (4)

can be interpreted as simple scalar equations giving the local forces in
terms of the local motion.

o
|

1= (%—2-)(51; (Cra, [le(T )] (18)

\
M - (@;?/;(sic)(ch (-] (19)
where
hy
o = 0+ <

N =
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The choice of local value of X5 1s usually made so that the lcad
distribution is approximately correct for a deflection shape similar to
the expected flutter mode shape. The value of x; 1s usually taken to
be (1 - xo) although as shown in this report the effect of its variation

from this value is quite insignificant. These matters are discussed
critically in reference 10.

For the present study, the preliminary values of the important aero-
dynamic parameters were taken to have the values:

Q

&
I

wi &

Q
o
O
1]
(@]

Q
9
5
Q
|
Wi
W

However, in the course of the investigation all of these were varied.
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APPENDIX B
BOX THEORY APPROXIMATION TO AERODYNAMIC FORCES

It is assumed that the downwash is constant over the area of a box
so that the pressure interaction between a given box and another can be
evaluated, using equations (17) and (19) of reference 13, with the inte-
gration of equation (19) restricted to the area of the interacting box
rather than the entire area inside the Mach cone. Since the integral
indicated in equation (19) cannot be written in closed form using known
functions, it .is simplest to expand the cosine and exponential functions
in a power series in frequency and integrate term by term. Using the
relative coordinates shown in figure 13, the pressure at the center of
the jth cell due to uniform motion of the ith cell can be written

ove\fk (Qieiwm [- o o \° o \2
L. = - — P —\P —_— P —_—\ P .
P]_J (2 ) ,\ v ELO + chﬁe 1 + (CB2> o+ 1<c52> 3 +

(20)
where
B B
Py = % cos™t —El + cos™t —Eg - cos™L EE; - cos™L Egg (21)
€2 &1 £1 )
1 BC4 BCo BCo
Py = - =—{( E5|cos-1 — - —=] - s=1 —— - cos-1 —=
1 Mot ) 2 » i &1 ¢ e
-1 §2 -1 gl
p2(Bt. J{cosh |—=| - cosh | —=—] | -
( l> Bty Bty
62<B§ ) cosh-l Eg— - cosh~t E&— (22)
2 Bt Bo |
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{ e BC BE BE
Py = - LL”<2 Egg cos™t —= - cos™? 212 512 cos™t —= cos1 2y
a2 2 | ° 1 31

\
B2<Ma2 _ _Z_;glLJ§22 _ B2g12 _ ‘ngz _ Bzclg -

2 wa - é\\ﬁ ~\[g 2 p%,° - \f@ 2 g% ;\ (23)
k 2)°2||*2 2 1 2

/

and where W is given by equation (8). Evidently the function Xk;

defined in the text is represented by the product of M/B and the power
series within the brackets. When one or more of the corners of a rec-
tangle lie outside the Mach cone, some of the functions in these equa-
tions are undefined. It can be shown that the results are correct if
the following convention is adopted.

cos'l EE =0 if EE >1
3 3
cos'l ES =% if E£ < -1
3 3
cosh'l l% =0 if lé% <1

Functions of the form of equations (21) to (23) could be integrated
over the jth cell to get the total force on this cell. However it appears
that sufficient accuracy results if the pressure at the center is simply
rmultiplied by the area of the jth cell. Additional inaccuracy results
when the ith cell lies along the leading edge of the delta wing. It is
possible to use the true shape of the wing here and represent the slant
leading edge, but preliminary attempts to do this led to unusual dif-
ficulties and to both poor and inconclusive results. The results of
this investigation are not contained in this report; in any case the
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discrepancies have not been resolved. The coefficients PO and Pl used

in this study are tabulated in table IX.

In this investigation, several assumptions were used for approximating
the aerodynamic forces. Three of these are discussed in this report. In
case A, the pressure was assumed to depend only upon the local motion,
with no time dependence. That is, only the coefficient Py for (i =3)
was used in equation (20). All other coefficients were taken to be zero.
In case B the steady state pressure was ascribed to the wing deflections
in the forward sweeping Mach cone, but no time dependence was assumed.

In this case all of the Pp coefficients in table IX were used, with

coefficients Py, Pp, . . . etc. taken to be zero.

N H =

Case C differed from case B in that the Py coefficients were

properly represented. The higher order coefficients though automatically
present by virtue of the computation method used, were not necessarily
equal to the correct value. It was not felt necessary to match the fre-
quency response beyond the first power because of the insignificant
effect of the higher order terms.
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TABLE I.- PHYSICAL CHARACTERISTICS OF DELTA WINGS

Wing 450 60°
Leading edge sweepback angle, deg . . . e e 45 60
Trailing edge sweepback angle, deg . . . 0 0
Root chord, in. . . . . . e e e e e . 6.0 8.5
Semispan, in. . . . « 4 . . . . . . . 6.0 h.g1
Aspect Tatlio « v v+« 6 4 v 0 0 e e . . . e e e k.0 2.31
Thickness, iIn. . .+ « v v v v o « . . e e . 0.034 0.034
Material . . . . . . . e e e e . Magnesium | Magnesium
Weight of semispan, lb . . e - .. 0.0391 0.0453

TABIE IT.- EXPERIMENTAL NORMAL MODE AND FLUTTER
PROPERTIES OF DELTA WINGS
(a) Normal mode frequencies
450 wing 60° wing
Source
fl f2 f3 fl f2 f3

kg 183 257 67 193 3h2

50 185 261 66 200 341

Reference 1 L8 180 273 67 190 338

L8 178 ohh 66 194 340

248.8 182 259 %66.5 219 2340

Reference 12 50 184 258 66 185 336

a
Average value.
(b) Wind-tunnel flutter characteristics
45° wing 60° wing

Mach number 0.40] 1.30]| 2.00 3.00 0.54 1.30| 2.00 3.00
ve, in./sec . o.528] 1.54 | 2.02] 2.4 x 10%|o.713 | 1.54| 2.02| 2.4k x 10*
op> 1b sec? in.=% . .| 1.11]0.318 |0.338(0.347 x 10-7| 1.11 |0.419[0.338 [0.304 x 1077
fg, CPS . . . wo| 150! 159 159| 162 | 172| 170 180
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TABLE IV.- NORMAL MODE SHAPES

57

&Not recorded.

(a) U5° Cantilever Delta Wing
10-cell structure 15-cell structure 21-cell structure
Mode number
Cell| 1 2 3 i 1 2 3 in 1 2 3 I
. Mode frequency

hg.7 [188.5 |269.5 | 419 (48.9 |183.2 | 264 k3o |48.2 | 182 261 430
Vertical deflection, in. '
1 |1.000}{-0.940(-0.550{0.281{1.000{-0.840[-0.621|-0.422]1.000}-0.978]-0.825{-0.600
2| .600{ .0O4| .858|-.221} .699| -.251| .k6r| .119| .755| -.4s9l .o55| -.036
3| .482] 1.250| -.339|-.940{ .598| .585| -.288} 1.000| .675| .330| -.396| 1.000
L} o2k .265] 1.000] .kk2i .ho2| .0981 1.000] -.140f .5181 -.066] 1.000! -.016
5 .185) .8207 .118} .378! .338] .6ho} .228}) .181) 450 .525| .261| .54%0
6| .129| 1.000| -.468]1.000| .268]| 1.000| -.429] -.212] .380( 1.000| -.429| .4o2
7 .1550 120 712} -.3601 .291) .110; 1.160f -.3iL
8 123 361 .252| -.330| .250| .4k79| .500| -.128
9 .096{. .502| -.129| -.580| .209| .755| -.098] -.321
10 L0681 484 -.319) ~.770| .1651 .B875] -.515| -.780
11 11| .082f .665| -.3%20
12 0921 .2k2| 330 -.295
13 07k L3551 L0151 -.ke6
14 L0581 3851 _ pool 605
15 O0h1t 331 -.269) -.655

Angle of twist, ©, radian

1} {(a) 1-1.358] 0.589(1.110]0.111|-0.990| ©.460]{-1.357]10.103(-0.996| 0.504}-1.614
2 -.915 .892| .531| .092( -.784 .67T7| ~.802] .091} -.845| .693(-1.105
3 -.706| .728|-.068] .092{ -.698| .623| -.340| .093| -.801| .655| -.757
i -.k2o| .660] .056] .062| -.509| .706| -.286] .o71p| -.634] .801| -.586
5 -.281] .5hb|-.204| .062( -.b22| .646f .027| .OT3| -.584] .764| -.o271
6 L0231 .2%2]-,189) .063| -.210f .4h7; Jb432| o) -. k23| 6290 .352
7 L0281 -.221] b7 -.027| .046) -.koL| .693| -.196
8 027 -.175| .384] .100| .Ok6| -.357| .666| .005
9 027 -.058| .258| .200] 047! -.219| .5hk2i .345
10 L026(  LOTH| .066| .008{ .ou7l -.oki{ .312| ko1
11 021] ~-.175|  .368) -.022
12 020 -.151| .352] -.057
13 017} -.080] .282] .179
14 .019| .006{ .152| .121
15 .019! .088| .008| -.084
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TABLE IV.- NORMAL MODE SHAPES - Concluded.

(b)

60° Cantilever Delta Wing

10-cell structure 15-cell structure 21-cell structure
Mode number
Cell| 1 2 3 i 1 2 3 L 1 2 3 k
Mode frequency
67.5 1196.5 | 345 | 397 |66.4 {192.3 | 339 | 389 |65.9 {190.5 | 338 | 395
Vertical bending, in.
1 |1.000|-0.390}-0.722{-0.033|1.000{-0.598|-0.870| 0.057|1.000|-0.610{-1.010]0.020
2| .600| -.189| .813| .148| .700f -.378] .375| -.300| .760| -.Lh1} .068| .239
3| .4o1l 1.000| -.028( -.411} .523] .920| .OTM} 1.000| .610(| .582| -.020{-.875
| .oh1| -.064| 1.000] .178| .410| -.200{ 1.000| -.507| .520( -.290| .8LO| .420
5| .154 .510| .209{ -.088} .299! .679| .402{ .Lko| k10| .5081 .k25}-.496
6| .08 .481| -.308| 1.000| .190{ 1.000| -.395| -.945| .299| 1.000| -.209]| .115
T .159| -.078] .720| -.351| .297} -.166] 1.000} .432
8 L1111 .318|  .311| .100| .229| .350| .548]-.180
9 L0700 443 -.169) -.602] .161| .655| -.060| .280
10 .035|  .300} -.250| -.721| .100] .625{ -.435{1.000
11 111 -.069| .581( .250
12 .08k .156| .325(-.031
13 L0581 .279| .002{ .190
14 035 .259| -.197| .522
15 .019( .151| -.161| .ko2
Angle of twist, ©, radians

1 ]0.164|-0.892(-0.028}| 0.343]0.148]-1.052{-0.199|-0.929}0.138 [-0.923|-0.270(0.938
2 | .107) -.620) .4361 .283| .115| -.84k9| .203| -.818| .116} -.792| .0T3| .836
3 | .105| -.325| .373%| -.328| .116| -.606| .320| .148] .117| -.658} .185} .195
L} .okl -.%021 W13 .13%36| .OT3! -.563) .391] -.590| .086| -.607{ .313| .676
5 | .ok -.1h47| .343( -.213] .O7L| -.393| .443| .130| .086] -.4ok} .394]-.130
6| .035| .0861 .09k{ -.137| .065| -.020| .301| .577| -085| -.198| .40O9|-.643
7 L031) -.253] .264| -.2831 .052] -.393| .3k9| .452
8 .029| -.172] .283| .oT79| .051| -.312| .LkoO| .065
9 .026| .001| .180{ .264| .ohkg| -.109| .36T|-.440
10 .019] 111§ -.022( -.105( .0k2 098 .121]-.233
11 022 - 17| .202] .211
12 L0211 -.134{ .223| .021
13 .020] -.0k1| .196|-.211
1h .018] .ok2| .OT73|-.124
15 .013| .0T73| -.039] .102

o In ol SINYY
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TABLE V.- MODULUS OF ELASTICITY INFERRED FROM

ANALOG INFLUENCE COEFFICIENTS

Number of . . Inferred modulus
. Loading Deflection . .
cells in oint oint of elasticity,
analog p p 1b/sq in.
A A 5.06 x 10°
C C 5.06
21 C A 4 .69
A c L .84
average h.91
A A 5.06 x 10°
15
C C 5.10
A A 5.13 x lO6
10
C C 5.03
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TABLE VII.- FLUTTER CHARACTERISTICS USING STRIP THEORY

(a) Effect of Aerodynamic Center

45° wing 60° wing
2oy 2 [oy2
pv= [pv pve [pv
Strip A= Afp|fy Y Afplte
"lq Axg Dxg JAVSSS Lx g
1 (a) (a) (a) (a)
2
Tip 1 1.2 0.11 1.1 0.15
2 3.5 61 2.3 .48
3 3.6 .92 1.3 .45
L .6 .15 1 .02
Root 5 0 0 0 0

2
8Note that A% and Afy are positive for Ax, positive (aft).

(b) Effect of Reference Axis Xy

459 wing 60° wing
2 Ipy2 2 [oy2
ev- pve A YT /eVE
Strip A5 2] 2
axy axy
(2) (a)
1 0 0
2 .03 .1
5 .03 1
4 .02 .03
> 0 0

a pv2 R cs .
- Note that A ? is positive for Axl positive (aft).
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TABLE VIII.- COMPUTED FLUTTER CHARACTERISTICS USING BOX METHOD

45° wing 60° wing
Mach number . . . . . . .« . . . . .. 1.5 2.0 3.0 2.0 3.0
Case A
Analog 10 cell 17k 171 169 183 181
Flutter 15 cell . . . 166 163 162 180 177
frequency, 21 cell .. . . 161 159 158 177 175
cps —
Experimental a152 159 159 170 180
Dynamic Analog 10 cell 6.19 9.22 4.7 8.44 13.5
pressure, 15 cell 5.78 8.41 13.6 8.23% 13.2
ov2 21 cell 5.39 8.19 13.1 8.10 13.1
2
1b/sq in. Experimental 24 .65 6.86 10.3 6.86 9.02
Analog 10 cell 22.1 21.% 20.8 19.5 19.1
il:;zizr 15 cell 20.7 19.h 19.2 15.0 18.6
par ’ 21 cell 19. 18.9 18.6 18.7 18.5
1b/sq in. Experimental a16.6 15.9 4.6 15.9 12.8
7 10 cell 1.%3 1.35 1.43 1.23 1.49
{“—‘31"5 15 cell 1.23 1.24 1.33 1.20 1.46
exper. 21 cell 1.16 1.20 1.27 1.18 1.45
Case B
Analog 10 cell 167 166 167 179 178
Flutter 15 cell 162 159 160 177 175
frequency, 21 cell 158 158 156 175 173
cps
Experimental 152 159 159 170 180
Dynamic Analog 10 cell L .84 7.68 13.6 T7.61 12.5
pressure, 15 cell L.61 7.34 12.7 7.1 12.3
ove 21 cell 4.2 7.41 12.4 7.26 12.2
2
1b/sq in. Experimental 4.65 6.86 10.3 6.86 9.02
Analog 10 cell 17.3 17.8 19.3 17.6 17.7
7
p s 21 cell 15.8 17.2 17.5 16.9 17.3
lb/sq in. Experimental 16.6 15.9 .6 15.9 12.8
¥ 10 cell 1.04 1.12 1.32 1.11 1.38
Zanalog 15 cell .99 1.07 1.23 1.08 1.36
Yesper. 21 cell .95 1.08 1.20 1.06 1.35
Case C
Flutter
frequency, 15 cell 157 159 (v) 172 173
cps
¥
analog 15 cell .965 1.06 (v) 1.05 1.35
?exper.

a0ptained by interpolation.

bTests not made.
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TABLE X.- EFFECT OF INDIVIDUAL AERODYNAMIC INTERACTIONS

2
ON FLUTTER PARAMETER, Eg—

[Interaction (1-3) denotes force acting on cell (j) due to
motion of cell (i). Quantities kl and kp are defined

in text.]
450 wing; Mach 2.0; 15 cell case
Interaction ky ko
1-1 0.27 0.16
3-1 .07 .17
2-2 O.hk 0.30
3-2 -.25 .30
5-2 .06 .25
6-2 .02 .27
10-2 .01 .16
3-3 -0.72 -0.53
6-3 -.09 -.h2
3-4 0.12 0.29
Ll .29 .31
5-4 -.17 .32
6-L4 -.04 .29
8-k .03 .29
9-4 .0L .23
10-% -.01 .27
5-5 -0.27 -0.31
6-5 .13 -.30
9-5 -.02 -.22
10-5 -.002 -.17
6-6 -0.73 -1.0
10-6 -.0k4 -.93
5-7 0.05 0.20
6-7 .01 .19
-7 .08 .20
8-7 -.05 .20
9-7 -.01 .15
10-7 -.001 .07
6-8 -0.01 -0.06
8-8 -.02 -.06
9-8 .01 -.05
10-8 .001 -.05
9-9 -0.12 -0.41
10-9 .03 -.37
10-10 -0.09 -0.69
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TABLE XI.- EFFECT OF CENTER OF PRESSURE OF EACH CELL

ON FLUTTER PARAMETER, ov2/[2

the term /x 1is cell length in airstream direction and
Ac.p.
&x
expressed as per unit value of Ax.]

is the shift forward of center of pressure

450 wing; 15 cell; Mach 3.0; case A

Apv2/2

2
Cell _eve[2
Ac.p.

Ax
1 -1.60
2 -1.4k
3 -1.78
) Lz
- -0
5 -.82
6 -.55
T -.13
8 -.16
9 -.09
10 .00
11 .00
12 .00
13 .00
1k .00
15 .00
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TABLE XII.- APPROXIMATE FLUTTER MODE SHAPES

450 wing 60° wing
Cell Vertical deflection

Amp%itude, Phase, deg Amp%itude, Phase, deg
in. in. (a)
1 1.00 0 1.00 -
2 .65 1 .67 -
3 .43 3 .32 -
L .36 2 .38 -
5 .21 7 .17 -
6 .11 17 .06 -
7 .12 5 .15 -
8 .07 15 .06 -
g .03 36 .02 -
10 .02 80 .01 -
11 0 0 0 -
12 o) 0 0 -
13 0 0 0 -
1k 0 0 0 -
15 0 0 0 -

Angle of twist
Cell Amplitude, Phase, deg Ampl}tude, Phase, deg
radians
radians (a) (a)
(a)

1 0.25 - -
2 .21 - -
3 .18 - -
L .13 - -
5 .12 - -
6 .07 - -
7 .06 - -
8 ol - -
9 .02 - -
10 .01 - -
11 0 - -
12 0 - -
13 0 - -
14 0 - -
15 0 - - -

aNot measured.
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Reference |
- —— Reference |2

NONNNNNSNNNNANYN

NONUNNNNNNNNND

Second Mode Third Mode

(a) U45° wing.

/] /]
/
/
/]
/]
/]
A
/]
/ /
A
/]
/]
/]
/
/
/]
N— /
/ /
/] /|
Second Mode Third Mode

(v) 60° wing.

Figure 1l.- Plan forms and experimental normal mode node lines for delta
wings.
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(a) First mode; £y = 66 cps.
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(b) Second mode; f, = 185 cps.

Figure 2.- Experimental mode shapes of 60° wing.
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——— Private Communication

/] /
/] /)
A /
/] /]
A / ——— Reference 12
/
\ 7N
/ /
/ /
T\ /
/ /] N
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/ \ / Y
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E N\ E=
/ ¢ y —~ N\
RN\ 1A IS !,-;075
1.00 y //—-\\ \\\ LN 00
W\ N A
g A VI L \\
I / '\\\\\\\\ g I ARARTARY
“25 -75 -100 -500 =25 <75  -100 =500
(¢) Third mode; £z = 336 cps.
Figure 2.- Concluded.
A
A
/]
/
/]
/|
.25
g /
/ f
j ! .50
A II /
,' / D 75
; [ / / 1.00
g I Il /7
A I [ [ 4

(a) First mode; fj = 50 cps.

Figure 3.- Experimental mode shapes for 45° wing (ref. 12).
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(b) Second mode; f£5 = 184 cps.
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(c¢) Third mode; f3

Figure 3.- Concluded.
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lnfluance cooffucuent

ot loading point, in/lb

A C
Deflection A 0.123 0.181
point G 75 292

Figure &.- Experimental influence coefficients of 45° wing.
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/] 21 Cell IS Cell y 10 Gell
. /\\ N
A3 A . g
2t N\ 15N / I.0\\
20 | 15 I\ A .| N /
A 0 \ A . .\‘
Al o N . ° P \

. A3 188N AN
Aw|iz|s 6N 1 AN A . ) .
.70 7. TN dels|s]shN 42113 IN

7liz|e s | 3\ ; \\
/ L4 . . . - / . . . PY
Aol n | 7]4a] 3 1\\ AN v a2 N A7 a 2 i \
/ A A

(a) U450 delta wing.

AN

\ 21 Cell \ 15 Cell / 10 Cell
A ] N
A
2N 7 7\
4N 1 \
/
20| 15 \\ / \\ /]
\ 1 1a x'o\ ; \
JEIEAN | 1| s \
/] \ A5 é é\ 7/ N\
?l'a 3] 9 %\\ \ A . . ,\
/] /] 8 5 3 \
A0 111N\ delsls[sN 7
A7z 8]|s| 3 \\ /] g \\
A A \
A . . . .
j || 7|a|z2 |\\ y np7 a2 \ AT 4 g ! \
A /]
/ /

(b) 60° delta wing.

Figure 5.- Cell divisions used for analog representation. Dots are
points at which deflection is defined in analog circuit.
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15 Cell Structure 21 Cell Structure

\ f, =66 cps \ |=66 cps

: N\

N
BIVE/AN e

(a) First mode.

15 Cell Structure o 21 Gell Structure
= . g fo= 191 cps

\x t,= 192 cp n \\
PA
[N I
T S5V
AN N
o o] \ o B4 =75
ol A A

(v) Second mode.

Figure 6.- Analog mode shapes for 60° wing.
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IS Cell Structure o
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21 Cell Structure
f3=338 cps
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~-25 =715
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(c) Third mode.

15 Cell Structure
fa= 389 cps A

Y
1
I
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21 Cell Structure
fga= 395 cps
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1
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L0
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Figure 6.- Concluded.
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Figure 7.- Analog mode shapes for h5o wing.
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Figure 8.- Comparison of experimental and analog mode shapes
for 60° wing.
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(a) Three-dimensicnal sketch of pressure distribution.
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Figure 13.- Wing-relative coordinates for defining three-dimensional
pressure interactions.
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